

Vibrational features of dacarbazine and deticene revealed by Raman, SERS, THz-Raman and DFT methods

Alexandra Falamaș¹, Mihaela Chiș², Călin Căinap³, Nicolae Leopold², Vasile Chiș²

¹National Institute of Research and Technology of Isotopic and Molecular Processes, 65-103 Donath, 400293, Cluj-Napoca, Romania

²Faculty of Physics, Babeş-Bolyai University, 1, M. Kogălniceanu, 400084, Cluj-Napoca, Romania

³The Oncology Institute "Prof. Dr. Ion Chiricuţă", Republicii 34-36, 400015, Cluj-Napoca, Romania

Introduction

Dacarbazine (DTIC, 5-(3,3-dimethyltriazeno)imidazol-4-carboxamide), is one of the most used antineoplastic chemotherapy compound in treating metastasized malignant melanoma, advanced lymph node cancer (Hodgkin's disease) and advanced cancers of soft tissue (soft tissue sarcomas) [Egg04, Tag08]. The drug is administered through injection (commercially known as Deticene - DET), which is reconstructed from DTIC with citric acid and mannitol at a pH of 3.0-4.0. DTIC is extremely sensitive to light, its biological activity being also greatly affected by the pH of the medium in the biological range 7.0-8.0[Sau86].

Since the protonated and deprotonated nitrogens act as a proton donor or acceptor in hydrogen bonding, interactions of dacarbazine with proteins/nucleic acids may depend on a particular molecular form of dacarbazine. Thus, in order to get further insight into the structure/activity relationship, it is important to understand the precise molecular structure and structural behavior of the drug at different pH values.

Materials and methods

DTIC was purchased from Sigma Aldrich as crystalline powder. Deticene used in this study was a commercial drug supplied by the Faulding company. Bi-distilled water was used to prepare the aqueous solutions,. The Raman spectra of DTIC and DET were recorded from solutions of 1 M and 0.02 M, respectively. To adjust the pH to the desired values, small amounts of HCl, citric acid or NaOH were added.

Hydroxylamine reduced silver colloid was prepared according to the method published by Leopold and Lendl [Leo03]. The SERS spectra at different pH values were recorded by adding 30 mL 10⁻³ M of DTIC or Deticene aqueous solution to 500 mL silver colloid.

Raman and SERS spectra of the solutions were recoded using a Renishaw InVia Raman

Raman and SERS spectra of the solutions were recoded using a Renishaw InVia Raman system using a 532 nm diode pumped solid state (DPSS) laser with a maximum power of 200 mW and a grating with 1800 lines/mm. For the acquisition of the ultra-low frequency Raman spectra we used the Near Excitation Tunable (NExT®) filter from Renishaw plc.

As starting geometries for energy minimizations, we used the X-ray structures derived from crystallographic data reported by Freeman and D. Hutchinson [Fre79]. The calculations were performed at B3LYP/6-31+G(2d,2p) level of theory, using the Gaussian 09 package [Gau09]. Solvent effects have been considered by using the PCM continuum model [Men02].

Results and Discussion

Dacarbazine's conformers

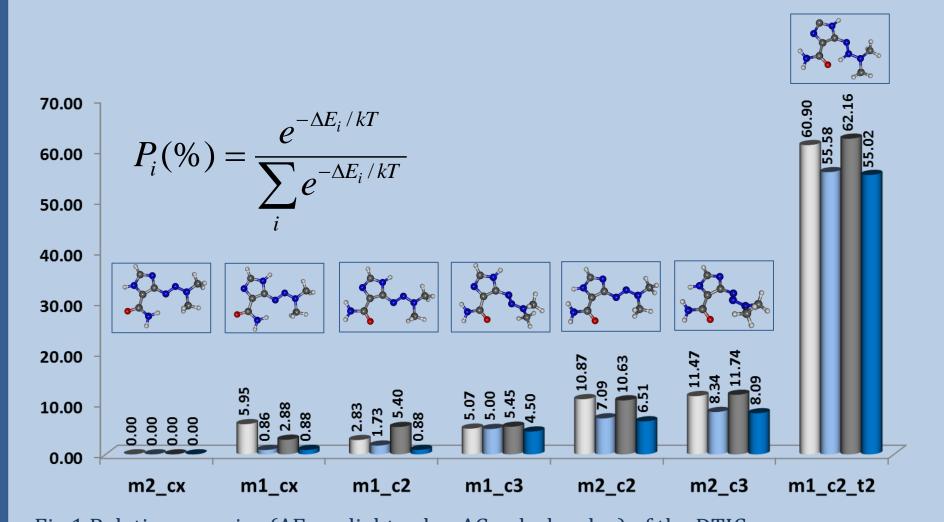
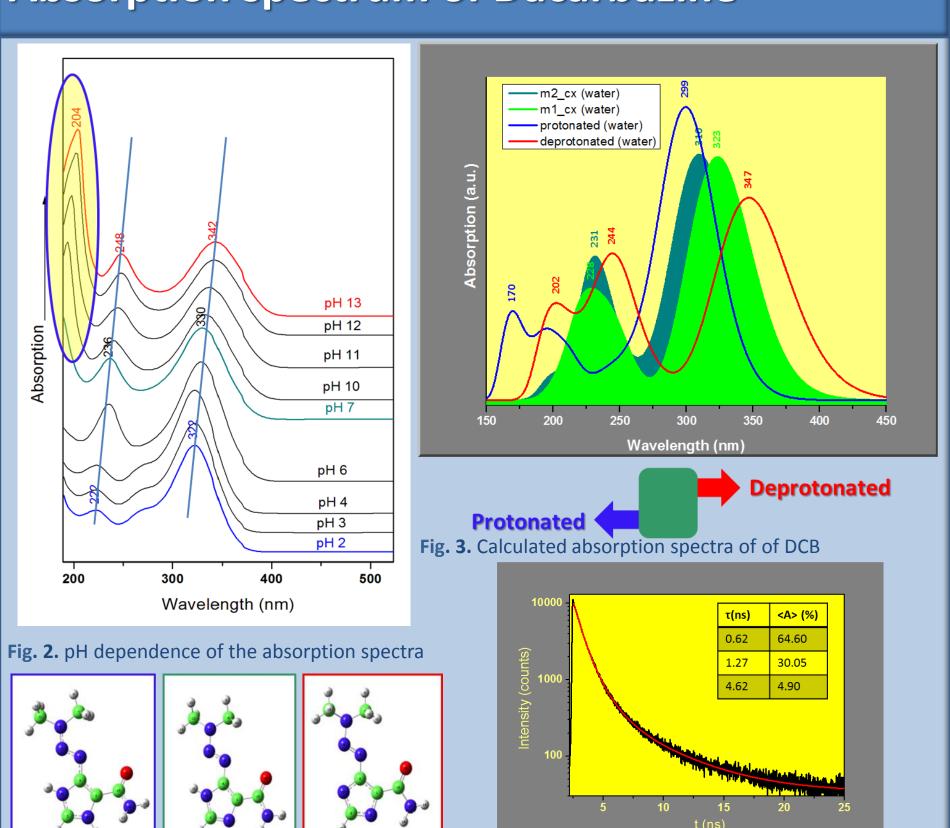
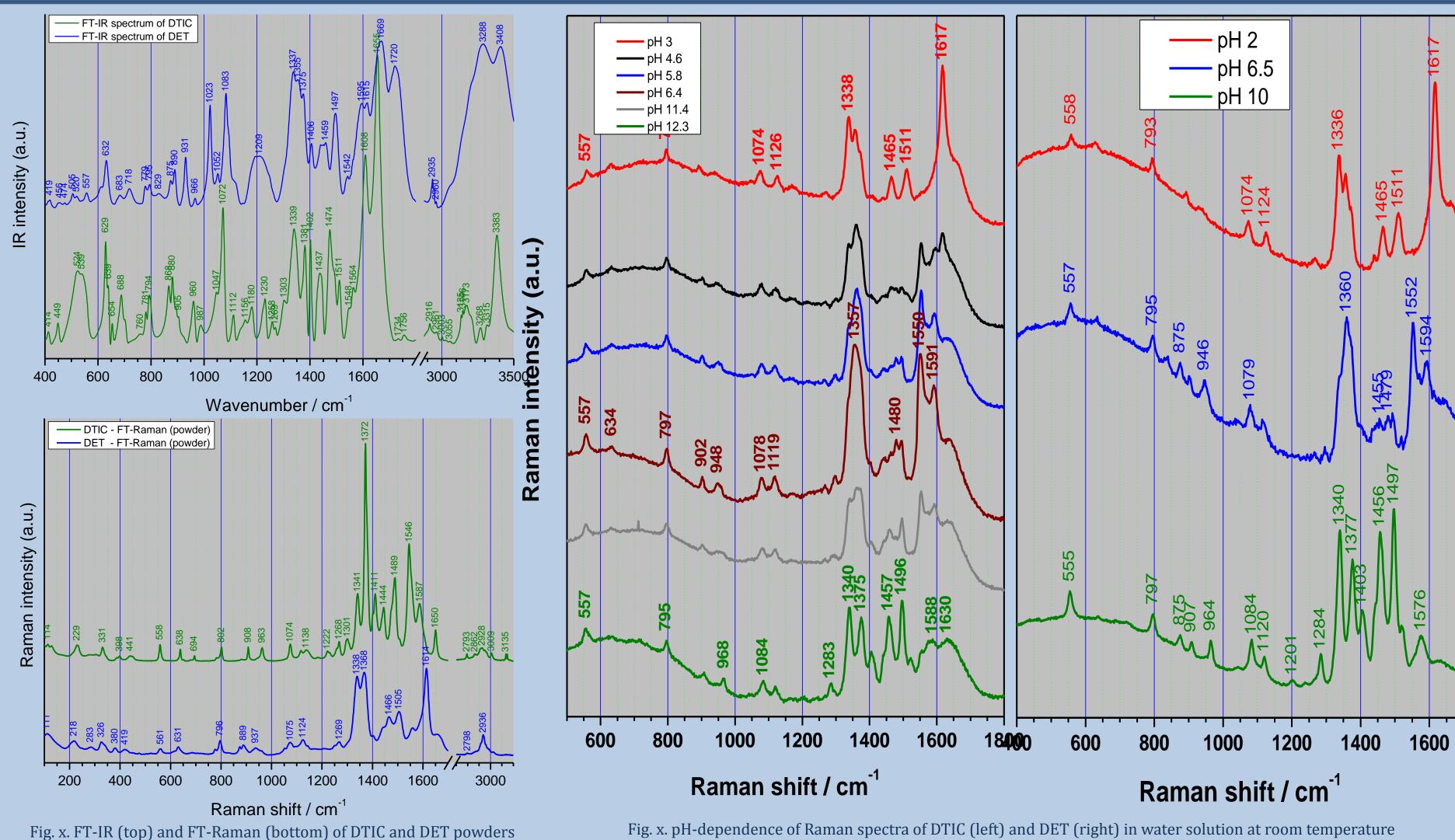
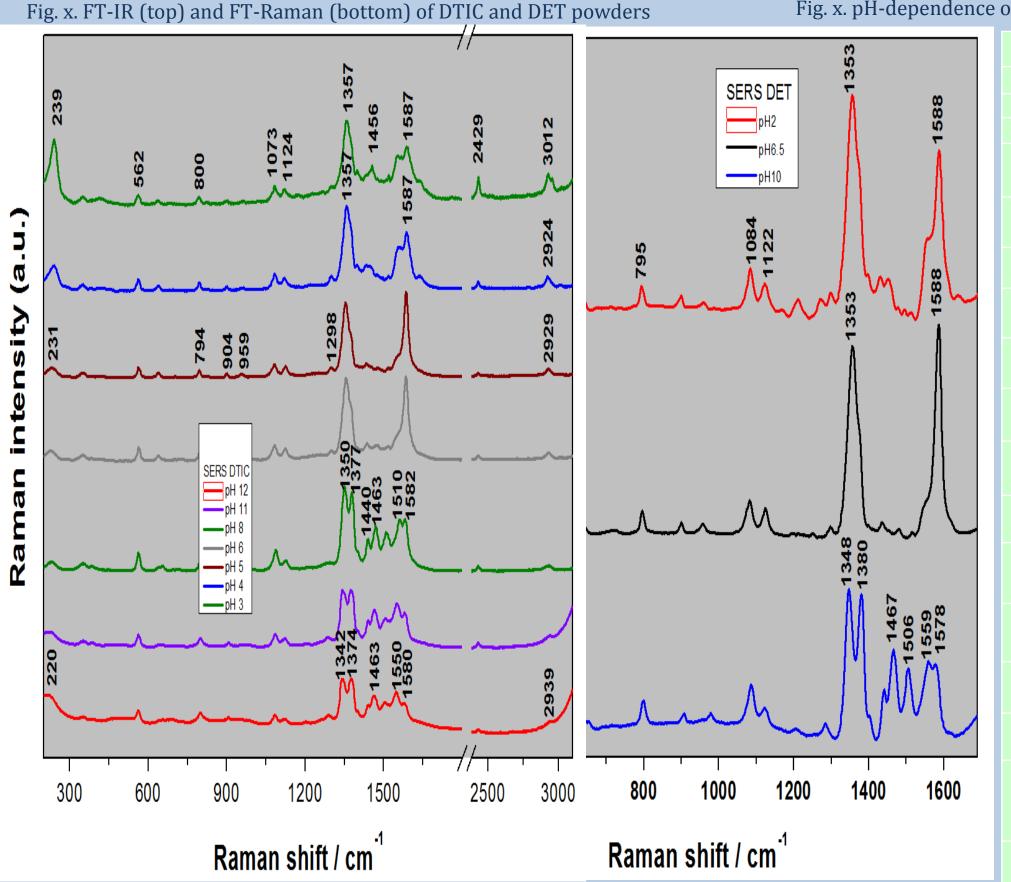



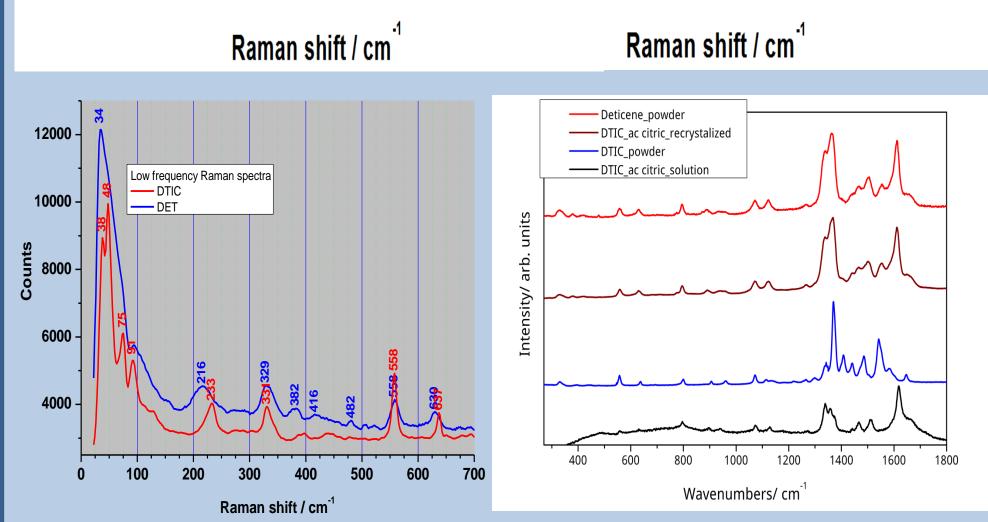
Fig.1 Relative energies (ΔE_{HF} – light color, ΔG – dark color) of the DTIC monomers calculated at B3LYP/6-31+G(2d,2p) level of theory, in gas (grey) and water (blue)

Conformer	m2_cx	m1_cx	m1_c2	m1_c3	m2_c2	m2_c3	m1_c2_t2
Relative Gibbs free energy in water (kcal/mol)	0.00	0.88	0.88	4.5	6.51	8.09	55.02
Boltzmann population at RT (%)	69.14	15.41	15.41	0.03	0.00	0.00	0.00

Absorption spectrum of Dacarbazine




power 28.3 μW)


Fig. 4. Time-resolved fluorescence at of 0.8·10⁻² M

aqueous solution Dacarbazine (excitation: 375, nm laser

Infrared, Raman and SERS spectra of dacarbazine and deticene

Experimental data		Computed data						
DTIC	DET	DTIC	DET		D .: 1			
FT-IR/	FT-IR/	FT-IR/	FT-IR/	Assignment**	Functional	Comments		
FT-Raman	FT-Raman	FT-Raman	FT-Raman		group			
3383/-	3408/-	3434/3436	3574/3574	$v_{as}(NH_2)$	Am	shifted between DTIC and DET		
3268/-	3288/-	3265/3267	3417/3415	$v_s(NH_2)$	Am	characteristic for DET		
3135/3135		3130/3132		ν(NH) (H-bonded)	Im	characteristic for DTIC		
-/2927	2935/2936	2934/2933	2941/2941	$v_s(CH_3)$	Me	characteristic for DET		
1655/1650	16691657	1667/1664	1692/1692 1657/1657	ν (C=O)+ δ (NH ₂)	Am	blue-shifted for DET		
1608/1607	1615;1595/ 1614	1596/1598	1567/1567	$\delta(NH_2)+\nu(CO)$	Am	blue-shifted for DET		
1548/1546	1595/1592	1531/1531	1591/1591	ν(C-C)+δ(NH) Im	Im	intensity ratio well reproduced for DTIC		
1511/1509	-/1505		1476/1474	$\delta(CH_3)+\nu(NN)+Im$ ip. def.	Me+Tr+Im+ Am	characteristic for DET		
1491/1489	1497/-	1492/1491		$\delta(CH_3)+\nu(NN)+Im$ ip. def.	Me+Tr	characteristic for DET		
1474/1473	1459/1466	1452/1461	1450/1448	$\delta(CH_3)+\nu(NN)+Im$ ip. def.	Me+Tr+Im	red shifted for DET		
1381/1372	1373/1368	1384/1387	1374/1373	$v(NN)+u(CH_3)+Im$ ip. def.+ $\delta(OCN)$	Me+Tr+Im+ Am	1373 and 1357– doublet characteristic		
1339/1341	1337/1339	1344/1357	1338/1357	$\nu(NN)+\delta(CH_3)+$ $\delta(MeNMe)$	Tr+Me+Im	for DET in FT-IR and Raman		
400044000	1209/-	1221/1221	1192/1191	Im ip def.+ ρ (NH ₂) + δ (CH)+ δ (NH)	Im+Am	characteristic for DTIC		
1230/1230						blue-shifted		
						broad IR band for DET		
1072/1074	1083/1075	1059/1061	1050/1049	δ (CNC) Im + δ (NNN)+ ρ (CH ₃)	Im+Tr+Me	blue-shifted in FT-IR for DET		
-/-	1023/-	-/-	1025/1025	δ (NNN)+ ρ (CH ₃)	Tr+Me	characteristic band for DET		
960/963	967/962	948/948	921/922	γ (NH)+ δ (NCN)	Im	characteristic for DTIC		
905/908	931/937	923/926	881/880	γ(NH)- γ(CH)+δ(NNN)	Im+Tr	blue-shifted, characteristic for DET		
688/694	682/-	705/688	707/675	$\delta(OCNH_2)$ + Im ip. def.	Am+Im	characteristic for DTIC		
639/638 629/-	-/- 632/631	642/649	634/639	ρ (Im.)+ δ (NNC)	Im+Tr	doublet characteristic for Im [Soc04]		
558/558	557/561	562/562	550/550	$\delta(CCNH_2)+\delta(NNN)$	Am+Tr	characteristic for DTIC		
539/- 524/-	522/-	527/529	284/279	ω(NH ₂)	Am	doublet characteristic for DTIC		
449/441	-/-	451/441	447/447	δ (CCN) Tr + δ (MeNMe)	Tr+Me	characteristic for DTIC		

Conclusions

- □ Both, in gas-phase and water solution, the m2 tautomer is the most stable.
- □ Unlike the solid state, the spectroscopic response of DTIC in water solution must be explained considering the contribution coming from both tautomers, m2_cx and m1_cx.
- □ Proper model and solvent effects must be considered for a reliable assignment of UV-Vis spectra. Excellent agreement between the experimental UV-Vis data and TD-DFT results
- □ Fluorescence lifetime experiment suggest the presence of three different species in aqueous solution of DTIC
- Different molecular species of Dacarbazine have been identified in acidic, neutral and basic water solutions. Characteristic bands are:

 protonated: Raman 1617 and 1356 cm⁻¹, SERS 1587 and 1557 cm⁻¹

 neutral: 1592, 1553 and 1357 cm⁻¹, SERS 1587 and 1357 cm⁻¹
- deprotonated: 1496, 1456 cm⁻¹, SERS 1550, 1463 and 1342 and cm⁻¹
- DET is obtained from citric acid solution of DTIC, by recrystallization
 Similar species have been detected adsorbed on Ag colloids for DTIC and DET and the same adsorption geometry is concluded
- Detection limit of DTIC: Raman 10⁻³ M, SERS 9.09 ·10⁻⁷ M
 Characteristic low frequency bands for DTIC: 38, 48, 75 and 93 cm⁻¹

References

[Tag08] Tagne J.-B., Kakumanu S., Nicolosi R.J., *Mol. Pharm.*, 5 (2008) 1055–1063. [Egg04] A.M.M. Eggermont, J.M. Kirkwood, *Eur. J. Cancer*, 40 (2004) 1825–1836 [Sau86] Saunders P., DeChange W., Chao L., *Chem.-Biol. Int.*, 58 (1986) 319-331. [Bal79] Balsamo A, Crotti P, Lapucci A, Macchia B, Macchia F, Del Tacca M, Mazzanti L, [Fre79] H.C. Freeman and D. Hutchinson, Acta Cryst., 1979, B35, 2051-2054. [Leo03] N. Leopold, B. Lendl, J. Phys. Chem., B. 107 (2003), 5723–5727. [Men02] B. Mennucci, J. Tomasi, R. Cammi, J.R. Cheeseman, M.J. Frisch, F.J. Devlin, S. Gabriel, P.J. Stephens, J. Phys. Chem. A 2002, 106, 6102-6113. [Gau09] Gaussian 09, Revision A.02, M. J. Frisch et al., Gaussian, Inc., 2009. [Fre79] H.C. Freeman and D. Hutchinson, Acta Cryst. B35, (1979) 2051-2054.

Acknowledgments

The research undertaken for this study was conducted using the Babeş-Bolyai University Research infrastructure financed by the Romanian Government through the programme PN II - Capacities - project title Integrated Network for Interdisciplinary Research (INIR), and the project MADECIP (POSCEE COD SMIS CSNR 48801/1862). V.Chis highly acknowledges financial support from UEFISCDI PNII-RU-TE-2012-3-0227 grant.